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ABSTRACT

This report investigates the idea of utilizing Luenberger's minimal-order

observer as an alternate to the Kalman filter for obtaining, state estimates in

linear discrete-time stochastic systems. More specifically, this dissertation

presents a solution to the problem of constructing an optimal minimal-order

observer for linear discrete-time stochastic systems where optimality is in

the mean-square sense. The approach taken in this dissertation leads to a

completely unified theory for the design of optimal minimal-order observers and

applicable to both time-varying and time-invariant linear discrete systems.

The basic solution to the problem is first obtained for that class of systems ,

having Caussian white noise disturbances. The solution is baseO on a special

linear tranxsrmation which transforms the given time-varying discrete-time

state equations into an equivalent state space which is extremely convenient

froa the standpoint of observer design Design of the observer is based on a

special observer configuration containing a free gain matrix, , wh ic%. is choser

to minimize the Lean-square estimation error at time "i." The solution obtained

is optimal at each instant "i" and therefore is optimal both during the transieni

period and in the steady-state. Computation of this optimal gain matrix is

recursive as in the Kalman filter algorithms, however, conputatioaly the

solution is much simpler than for the Kalman filter. In the special case of no

measurement noise, the observer estimation errors arc identical with those of thM

corresponding Ealman filter. When measurement noise is not excessive, estimatio'

errors comparable with a Kalman filter are obtained.

Next, the basic observer solution is extended to the class of systems for

which the noise disturbances are time-wise correlated processes of the C.aussr-

Markov type. In considering the correlated noise inputs, the basic observer

structure is used directly, i.e., it is not necessary to augment the plant state

equations as is done in the usual Kalman filtering theory. The observer free

rain matrix, Ki, is modified appropriately to account for the ti.e-wise correlat on

of the noise inputs and is chosen again to yield minimum mean-square error

estimates of the state vector.
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To illustrate the theory and application of the observer designs develope.!

in the dissertation the problem of designing a radar tracking system is consider d.
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the proposed optimal observer design technique.
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ABSTRACT

This report investigates the idea of utilizing Luenberger' s minimal-order

observer as an alternate to the Kalman filter for obtaining state estimates in

linear discrete-time stochastic systems. More specifically, this dissertation

presents a solution to the problem of constructing an optimal minimal-order

observer for linear discrete-time stochastic systems where optimality is in

the mean-square sense. The approach taken in this dissertation leads to a

completely unified theory for the design of optimal minimal-order observers and is

applicable to both time-varying and time-invariant linear discrete systems.

The basic solution to the problem is first obtained for that class of systems

having Gaussian white noise disturbances. The solution is based on a special

linear transformation which transforms the given time-varying discrete-time

state equations into an equivalent state space which is extremely convenient

from the standpoint of observer design. Design of the observer is based on a

special observer configuration containing a free gain matrix, Ki, which is chosen

to minimize the mean-square estimation error at time "i." The solution obtained

is optimal at each instant "i" and therefore is optimal both during the transient

period and in the steady-state. Computation of this optimal gain matrix is

recursive as in the Kalman filter algorithms, however, computationally the

solution is much simpler than for the Kalman filter. In the special case of no

measurement noise, the observer estimation errors are identical with those of the

corresponding Kalman filter. When measurement noise is not excessive, estimation

errors comparable with a Kalman filter are obtained.

Next, the basic observer solution is extended to the class of systems for

which the noise disturbances are time-wise correlated processes of the Gauss-

Harkov type. In considering the correlated noise inputs, the basic observer

structure is used directly, i.e., it is not necessary to augment the plant state

equations as is done in the usual Kalman filtering theory. The observer free

gain matrix, Ki, is modified appropriately to account for the time-wise correlation

of the noise inputs and is chosen again to yie-ld minimum mean-square error

estimates of the state vector.



To illustrate the theory and application of the observer designs developed

in the dissertation the problem of designing a radar tracking system is considered.

* Examples are included which illustrate clearly the practicality and usefulness of

* the proposed optimal observer design technique.

Finally, a host of topics for future research is presented in the hope of

stimulating further research in the domain of observer theory.
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1. INTRODUCTION AND OUTLINE OF RESEARCH

I1 INTRODUCTION AND PROBLEM STATEMENT

The general state estimation problem to be considered in this

dissertation is described simply as follows . Given the linear stochastic

discrete-time dynamical system characterized by the equations

_!i+1 = Axi + w(.1)

Yi= Hxi +v i  (1.2)

where

x i is the n-dimensional state vector

Yi is the m-dimensional measurement vector

w and vi are, respectively, n-dimensional and m-dimensional

independent Gaussian white noise sequences having zero means and

covariances Qi and Ri

and 2o, the initial state, is an independent Gaussian vector with mean x|1

and covariance Mo . It is desired to find an estimate of the state vector x at

time "i" along with its associated error covariance P1!1. The notation

"i / i i mplies the estimate is to be based on all the measurements obtained

up to and including yi obtained at time "I." It is, of course, also desired

that this estimate be optimal in some sense, I.e., with respect to some

given performance criterion. There are many performance criteria which

have been presented in the literature pertaining to estimation theory,

however, from the standpoint of mathematical tractability the quadratic

4.1
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performance criterion is most appealing and it was this performanc,.

criterion which was used quite successfully by Kalman [ 14 ]. If it is

desired that the estimate be optimal in the mean-square sense, which

implies that the estimate minimizes the quantity E tXL/i-xil

then the solution to the estimation problem is the well-known Kalman filter

and the defining equations for the optimal Kalman estimator are

= + Kiyi+l Hi+- (1.3)

o..

.i+1 = P -iHi+l' (HI+i+l/iHi+' + i.) "  (1.4)

PiI/i -AiPi/iAi + Qi (1.5)

Pi+l/i+l = (In K i+iH1+i) Pi+1/j (1.6)

where- i A x ."To initialize the Kalman filter at time "i=O" we take

-/o 0- and Po 0m

Although in theory the Kalman filter completely solves the problem

of s..._Le estimation in the mean-square sense for linear systems with

Gaussian statistics, its inherent complexity and implementation have

discouraged widespread application. Building the Kalman filter essentially

requires the simulation of the entire n-dimensional system being observed.

Equally important, the Ricatti equations (1.5) and (1.6) which must be

solved at each time instant "i" to obtain the optimal Kalman gain matrix, Ki ,

have been the source of much trouble in the real-time mechanization of

Kalman filters, especially in the case of large dimensional systems. These

numerical and computational problems associated with the real-time

implementation of Kalman filters have led many researchers to seek out

'4 •
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simpler, less optimal solutions to the minimum mean-square state

estimation problem.

Early work in this area was done by Luenberger [20-221 who showed

" that when the system (1.1) and (1.2)is time-invariant and no noise distur-

bances are present, the state vector x. may be reconstructed exactly with a

stable linear system of order "n-r" which he called a minimal-order

observer. Luenberger's basic idea in the development of his minimal-order

observer is the notion that since there are "m" independent measurements

already available it should be possible to reconstruct the entire n-dimensional

state vector of the system by generating only "n-r" additional quantities and

combining them appropriately with the '"m" already existing outputs. Of

course, Luenberger's basic assumption that the system inputs are free of

noise is not always satisfied in practice and this comprises a fundamental

limitation to his original work.

Next, Aoki and Huddle [3] extended Luenberger's work to include the

effects of noise disturbances w i and v. Howeve', their work was restricted

to time-invariant systems and as a result their technique is not directly

applicable to the more general time-varying system modeled in (1.1) and

(1.2). The technique presented in Aoki and Huddle [3] was essentially to

construct a minimal-order observer which minimized the steady-state mean-

square estimation error. However, their optimization technique is compu-

tationally formidable, even for the simplest of systems, and as a result does

not appear to have been used to any large degree in the design of minimal-

order observers for practical engineering systems.

Attempts to construct optimal observer designs based on a purely

deterministic point of view also appear to have been fruitless. Newmann [23_

1. ___
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has investigated the standard optimal control problem wi.di a quadratic cost

function for the case of linear time- invariant systems using an observer in

the feedback path when some of the state variables are not measurable. By

counterexample, he clearly demonstrated that if nothing is known about the

initial conditions of the state vector then there is no way of designing the

observer so that the cost of control will be minimized. In fact, if nothing

is known about the initial conditions then high cost may result from the use of

an observer in the feedback path.

Dellon [ 10]1 also studied the deterministic feedback optimal control

problem with the standard quadratic cost function from the standpoint of using

a minimal-order observer in the feedback to reconstruct the state vectorx

Dellon considered the more general time-varying discrete system in the

absence o, noise disturbances and has indicated similar findings. Restricting

his observer design to that class of observers having constant and equal

eigenvalues he concluded that the relative degradation in cost from the

optimal (i .e., when ail the states are available for feedback) cannot be made

arbitrarily small by proper choice of observer eigenvalues but the relative

degradation depends upon the original optimization problem.

More recently, Ash [4, 5] developed a sub-optimal minimal-order

* observer estimator design applicable to both discrete and continuous time-

varying stochastic systems. His main goal was to develop a stable minimal-

order observer which provided "acceptable" mean-square estimation errors.

Ash himself stated that his work comprises an engineering solution rather

* than a mathematical solution to the problem. The design procedure of Ash

is a "trial and error" technique which, if judiciously applied, may result in a

relatively good sub-optimal estimator in comparison to the corresponding

4



optimal Kalman filter. However, in the utilization of Ash's "trial and error"

technique it is not at all clear how to achieve acccptable performance without

trying many designs and selecting the best design out of those which were

tried out.

* To review the preceeding paragraphs, we have introduced the

fundamental problem of minimum mean-square estimation for linear discrete

stochastic systems and have indicated Kalman's optimal solution under the

assumption of Gaussian noise proci.sses. After describing Kalman's filter

* and its inherent problems of computation and implementation in real-time

systems, we next considered the idea of using Luenberger's minimal-ordur

observer as an alternate to the Kalman filter. The evolution of Luenberger's

basic observer theory is then presented through a discussion of the attempts

of various researchers to design observers which arc optimal in some sense,

both from a deterministic control theory point of view as well as from a more

general stochastic estimation theory point of view. Through this evolutionary

discussion we have attempted to provide the reader with a smooth transition

* "from Luenburger's original concept of a minimal-order observer to the

I ultimate topic of this dissertation. It should bx clear from the historical

evolution that the solution for an optimal minimal-order observer has

importance not only from a theoretical standpoint but also from the standpoint

of designing optimal and suboptimal engineering systems. For these reasons,

we have considered, in this dissertation, the problem of constructing an

optimal minimal-order observer for discrete-time stochastic systems and, in

the spirit of Kalman, have chosen the mean-square estimation error as our

performance criterion.

4 5-" ., "- , f r l .,ll -t ,$ I d t - d~ h - ". " - -, -



1.2 OUTLINE OF THE DISSERTATION

Chapter 2 is a presentation of some of the more important basic

results of observer theory as related to deterministic discrete time-varying

systems. Chapter 2 has been included mainly for completeness and is

intended to introduce the reader to the basics of observer theory. Thouc

familiar with the material may skip Chapter 2 without loss of continuity.

New theoretical results are given in Chapter 3, in which is presented

the fundamental solution for the optimal minimal-order observer in the

case where the noises w and v are Gaussian white noise sequences. Also, in

Chapter 3 the complete generality of the optimal minimal-order observer

design is discussed and the equivalence of this observer and the Kalman

filter is demonstrated for the special case in which the measurement noise,

Vi, is identizally zero. Chapter 4 treats important new extensions of the

basic minimal-rder observer design to the class of systems in which the

noise disturbances w , v i are time-wise correlated processes of the Gauss-

Markov type.

A comprehensive and comparative study of several observer designs,

including the Kalman filter, the optimal minimal-order observer, and

several equal eigenvalue observer designs, is presented in the examples of

Chapter 5. The computer simulations of Chapter 5 treat the practical

problem of designing a radar tracking system of reduced complexity based on

the optimal minimal-order observer solutions developed in the previous

chapters 3 and 4 of the dissertation.

The final conclusions and recommendations for further research are

presented in Chapter 6.

...



2. SOME FUNDAMENTAL RESULTS OF DETERMINISTIC
OBSERVER THEORY

2.1 MINIMAL-ORDER OBSERVERS FOR DETERMINISTIC SYSTEMS

The purpose of this chapter is to review some of the more important

fundamental results of deterministic observer theory which have beeh

obtained by various researchers to date. We begin by defining the concept of

a minimal-order observer for linear discrete-time dynamical systems.

Huddle [131 has shown that a completely observable n-dimensional system

xi+= Aix i + B (2.1)

with m independent outputs

= Hixi (2.2)

can be "observed" with an (n-m)-dimensional system

= Fizi +Giui + D(Xi (2.3)

such that the output of the observer is of the form

z i =Tx i +,,. (2.4)

where

- Fj) (o - TA) (2.5)

7
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If the observer initial condition is chosen such thatZ = To. then

from (2.4), (2.5) it is seen that z= Tix i for all "i" ? 0 and in this case it

is possible to reconstruct x. exactly from yi and.z i . The observer is chosen
rT

so that the rows of are linearly independent and the estimate of x is

taken as

X. (2.6)

.f. = T0o then (2.6) will give the true value of the state x i

Huddle also proved that for the system (2.3) to be an observer of the

state x i in (2.1) it is both necessary and sufficient that the following matrix

relations be satisfied

Ti+1Ai = FiTi + P iHi  (2.7)

B i  = Ti+1Bi  (2.8)

Further, since it is necessary that the matrix inverse exist,

Huddle postulated the inverse to be partitioned in the form P iV 1 i I and

obtained the solution of (2.7) to be

F i = Ti+IA1 iP (2.9)

D = Ti.IAV i  (2.10)

where PiTt +VH t - I.

By using a clever coordinate transformation Dellon [10 next

extended the work of Huddle by proving that the eigenvalues of the observer

matrix F i are completely arbitrary provided the system (2.1) is completely

uniformly observable. To do this DeUon assumed the measurement matrix

8L?
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Uto be of the form

(): (2)-- (2.11)

where Hi is an m x m full rank matrix at each "i". Then using the

linear transformation

Im -Hi()H i(2)

Kqii

Delon obtained an equivalent state space where the measurement matrix was

. ,.iiin the form

H, =0H(1 I O (2.13)

Without loss of generality the system (2.1), (2.2) was assumed to be already

in this desired form and the observer matrix T was taken to be

T i = Lili] (2.14)

where K is a free (n-m) x m gain matrix. From (2.9) it is shown that the
i

observer matrix Fi is of the form

,= F= A +K A (2.15)
S22 iM 12

where A2 2 and A 2 1 are respectively (n-m) x (n-m) and m x (n-m)

partitions of the matrix Ai in (2.1). Invoking the dual of Wonham's result
for controllability, [33) Dellon argued that if (A 22, A12

22htet te ianobservable1 pair then there exists a matrix K 1+1 such that the eigenvalues of

.. . ., . - .. , ... . - -..- .. . ..- o. - . .' .,. ., ', .: . -" '



A 22 + Ki+A12 may be arbitrarily assigned. But (A2 2 1,A 1 2 ) is an

observable pair at every "i" provided the system is completely uniformly

observable. Thus, the eigenvalues of Fi are completely arbitrary at each

instant "i"o

Returning to the idea of state reconstruction, we note that since the

entire state-2o is not directly accessible it is unlikely that the condition

z = To can be achieved. This implies that the observer error (2.5) will-O

in general be non zero and the estimate in (2.6) will be in error. However,

since the observer eigenvalues were shown to be completely arbitrary, it is

therefore possible to reduce the observer error to zero as rapidly as

desired. Thus, we have forced the estimate x. to approach the true state xi

as rapidly as desired.

2.2 OBSE.VERS OF ORDER "n"

Williams L31] has considered non-minimal order observers and has

approached the observer design problem with the idea of achieving suboptimal

Kalman filtering. Consider the n-dimensional observer given as

z+ Fi +G + D.iXi+1  (2.16)

Here the observer output is defined by the relation

zi= Tixi +e (€ 2,.17)

where Ti is an n x n nonsingular matrix, In this case the state estimate

x is taken to be

1-

T - (2.18)

10'



Williams has shown that the system (2.16) is an observer of the state in

(2.1) if and only if the following matrix relations are satisfied

T TI IA i F FiT i + Di+IHi IA1 (2.19)

T i-I-Bi Gi + Di..Hi+.Bi  (2.20)

The corresponding estimation error is given by the expression

=T i Fj) - To) (2.21)

One obtains an interesting solution to (2.19) by taking

D Ti+ T = + T K i+1 (2.22)

where K i+ is an arbitrary n x m gain matrix. With this choice for Di the

observer equations become

FiT i = Ti+10 - Ki lHi+1 ) Ai  (2.23)

Gi = Ti+,(l - Ki IHi+,) Bi  (2.24)

An interesting observation concerning (2.23), (2.24) is that the special case

where Ti = I and Ki is taken to be the Kalman filter gain matrix, the observer

obtained is identical to the Kalman filter. That is, the observer equations

become

F i = (I - K iMHi+I) Ai  (2.25)

Oi = Q " Ki+iHi 1) B1  (2.26)

DI+l -Ki+ 1  (2.27)

11
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Substituting (2.25), (2.26) and (2.27) into the observer system equation (2.16)

gives the result

z.~ = + B + K (i+l {i+1 - HL+l (A.iz + Biui)) (2.28)

which clearly shows the observer to be identical to the Kalman filter. If the

designer picks the gain matrix Ki+ 1 according to some other criterion, the

observer then may be viewed as a suboptimal Kalman filter. (For example,

the gain matrix might be chosen to give some arbitrary set of eigenvalues.)

Therefore, a Kalman filter is an n-dimensional observer for which the

weighting matrix D. has been chosen to minimize the mean square
2:,1

estimation error. It is also interesting to note that in the more general case

where the transformation Ti is a k x n rectangular matrix (k < n), the

solution of the fundamental observer equation (2.23) is an aggregation in

the sense of Aoki. [ 2 J We shall not pursue this idea any further since our

interest in this observer formulation will be primarily the design of n-

-" dimensional observers based on the selection of eigenvalues.

By a judicious choice for the observer transformation Ti. Williams

7 .has shown that it is possible to obtain completely arbitrary eigenvalues at

each instant "i" for an observer of the form (2.16). He considered a

completely uniformly observable pair (Ai,h.) and took as the transformation

T the following matrix product

12
* -. S. . . . . . . .

- i 
- "

i. l~a ""- -i~ll ~q-, * ... "" " " . ." "" -



1 0 ........... 0 0

"k 1 ... . ..... 0 j=On

h. rl A (2.29)
•-+1 j=0 i-

0 n-i

-A 1 -i+ [1 Ain j=O

Observability Matrix

where for the purpose of simplicity we have considered a single output system.

The results are easily extended to the multiple output case. For the

particular transformation T i chosen the observer system matrix Fi is in

column companion form and has arbitrary eigenvalucs.

Ai 1 0 ..... 0 x i o .. 0
n

xn- 1, 0 l.......0 x

F. (2.30)L•

i••

X,1  0 0...... 0 x

T AT 1 T Khh AT T. 1

i+1 i i -+1 A+T

Since the gain matrix Ki+ 1 is completely arbitrary and the matrix Ti is

nonsingular, from (2.30) it is apparent that any desired set of observer

eigenvalues may be obtained.

2.3 APPLICATION TO OPTIMAL CONTROL

One of the fundamental applications of observer theory is in the

design o1 feedback controllers for the linear regulator problem where some

13



of the states are inaccessible and. must therefore be estimated using an

observer. For example, assume it is required to obtain the control u in

(2.1) which minimizes the cost function

N
A= xi 1Qixi+u 1 'Riu (2.31)

i=o

where Qi and Ri are respectively n x n and p x p symmetric positive definite

matrices for all "i" in the interval [0,NJ. The feedback law which minimizes

J is known to be a linear state feedback of the form [30]

u= ix. (2.32)

where

P, L -(R i + B Bi B i  i+..A i  (2.33)im t' I i 1+1-

and F. is the n x n symmetric positive definite solution to the discrete
i

Ricatti equation

"= A"i'. A A'I' Bi (Ri +B. Bi) 1 Bi' i+lAi +Qi

with (2.34)

rN N

Applying the optimal feedback control results in the minimal cost

x 'i x (2.35)-, O,-U

By assumption the entire state vector x is not directly available for measure-

ment and therefore the optimal feedback control can not be implemented.

The alternative considered here is to use a minimal-order observer to

14
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construct an estimate of the state xi and apply the suboptimal feedback

control

- (2.36)

It is of interest to determine the effect of the observer upon the control law.

Substituting (2.6) into (2.36) and using the fact that PiTi +ViHi = In it is

:*! easily verified that the suboptimal control law is given by the expression

+ Fj t-T (2.37)tf --ui ipi (ij=O

It is clear from (2.37) that is the sum of the optimal control plus an

additive term due to the incorrect observer initial condition. The obvious

conclusion is that introducing an observer in the loop generally results in an

increase in cost from that obtained when the optimal control law is

implemented. Further, this increase in cost has been shown by Dellon (10]

to be of the form

J=J* +C 0_ C . (2.38)

where the positive definite matrix satisfies the recursive equation

Vi = F i+IFi +Pi i e(R, +Bi ;IA+lBi).'iPi

with (2.39)

*N 0.

To determine the effect of an observer on the stability properties of a closed

loop control system in which it is used we assume it is desired to control

the linear system (2.1) by the linear feedback law

15
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IK xu i (2.40)

Presumably K. will be chosen by the designer such that the closed loop system,

: defined by

; xi+ ! = (A i  +4Bill i)x4i
; (2.41)

achieves some desirable response properties, which will always include

stability. However, the actual state vector xi is not directly available and a

discrete time-varying minimal-order observer is used to generate an

estimate -. of the state x.. The estimate -. is seen from (2.6) to be of the

form

i= Pz i +(V (2.42)

where z, is the output of the minimal-order observer and Yi is the plant

output vector. Applying the control law (2.40) with the state estimate

(2.42) gives the closed-loop state equation

xi+ 1 = (Ai + BiK iViHi)x i + B.KiP~i (2.43)

Also applying the same input to the observer gives

zi+l = Ti..(Ai + BiK i)P i + Ti+i(Ai + BiK i) V(iH xi  (2.44)

Combining (2.43) and (2.44) results in the following state equation

r i + i 1 A i A + B K V H B K 1 ' r x 1 i

_=.-+l Ti+I(Ai + BiKiV i Hi Ti+(A i + Bi KiIP1  z 24

M. .... .



The stability properties of the overall closed-loop system become apparent

when the system is viewed in a different state space. With this thought in

mind, we perform the coordinate transformation [5]

.= A H(2.46)
X, i n x

This nonsingular transformation results in the equivalent state space

representation

x- - - -(2.47)_+ 0 F.i  i

In the special case of time-invariant systems it is clear that the eigenvalues

of the overall system are the eigenvalues of A + BK plus the eigenvalues of the

observer system, F. By assumption the closed-loop system A + BK has

stable eigenvalues and since the observer is designed to have stable eigen-

values then the overall system is obviously stable. Hence in the time

invariant situation it is clear that the observer does not affect the optimal

closed-loop poles at all, it merely adds some poles of its own [20].

Intuitively one would expect this same result to carry over to the more

general time-varying case. However, although it is true that at any fixed

instant "i" the eigenvalues of the system matrix (2.47) are the eigenvalues of

Ai +BiK i plus the eigenvalues oi Fi, this does not imply stability of the overall

system (2.47) in any rigorous fashion. To prove stability in the more

general case a more careful consideration of the state equations must be

taken.

17



It is, of course, assumed that the designer has constructed a stable

time-varying observer. Hence the observer-error is bounded and to prove

boundedness of the closed-loop state vector (2.47) it is sufficient to prove

boundedness of the subvector x1. From (2.47) we have

xi+ 1 -(Ai +BiK i)xi - BiK i P i (2.48)

which has the solution

i-I
x =E c,j+ B.K.PC.E (2.49)

j=o

where

.= F (Eo-To o ) (2.5U)

and the transition matrix Ci, j is defined as

i-i
'Pi fli (Ak+BkKk) (2.51)

k=j

Taking the norm of (2.49)

i-i
Sil'i! + "Pi j+ , I:JB K -P. . lie I

ilJ=o i , o - (2.52)

Since by assumption Cp. and F. are uniformly asymptotically stable we

have [10)

I1 0oI :c 1 8 for some c1 >0 and0<O < 1 (2.53)

and

I F 1 0 1i1 6 c2 012 for some c2 >0andO 2 < 1 (2.54)

18



Let! 'B K i c3 < and (2.52) becomes, ii = c3

!x ~C ~x h +cC 2 C c c (2.55)
C 1 1 1 2 3 1 O2 'IcoJE(

Evaluating the sum in (2.55) gives

i 1 C 1  o:x, +clc 2C3 P1 0 2.56- \1 ,"~ / '-(.56

Thus 1x' is bounded for all "i" and since lim "xi  0 for all finite e then the
-- 0

closed-loop system (2.45) is uniformly asymptotically stable.

2.4 ADDITiONAL COMMENTS

It should be emphasized at this time that the design procedures of

Huddle, Dellon and Williams involve little more than the statement that the

designer is free to choose the observer eigenvalues in any Jesired fashion.

The fundamentally important problem of where to place the observer eigen-

values has not yet been solved and remains a perplexing problem to the

designer. It is, of course, useful to know that one may design (n-m)-

dimensional observers or n-dimensional observers with arbitrary eigenvalues

at each instant "i"; however, without the added information of where to

optimally place the eigenvalues, the design of the observer remains at best an

ad hoc procedure.

In contrast to the idea of artifically picking the observer eigenvalues

to provide acceptable system performance, we shall base our observer

design on the more fundamental objective of minimizing the effects of system

noise disturbances upon the observer derived estimate Ii In formulating the

observer design problem in a more general stochastic setting, the resultant

19
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observer errors will be dependent upon the plant noise disturbances and from

a consideration of the noise induced errors an optimal observer design will be

obttned. We shall obtain a solution for the observer matrices Fi, Ti and D.

which not only satisfies the fundamental observer equation T i+IA =

FiT. + D+ H but results in an observer system which is also optimal in the

mean-square sense.

20
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3. OBSERVERS FOR DISCRETE TIME-VARYING SYSTEMS WITH
WHITE NOISE INPUTS

3.1 INTAODUCTION

In this chapter we shall focus our attention upon linear, discrete-time

stochastic systems for which the dynamic behavior can be characterized by

the following set of equations.

x Ai+1  Ax i +B iu i +w i (3.1)

S=Hxi+v. (3.2)

where x is the n-dimensional state of the system at time "i", ui is the p-

dimensional known control vector which acts upon the system at time "i", and

yi is the m-dimensional measurement vector. The initial state xo is a

Gaussian random vector with known mean and covariance

E~x Jx
-- -

E M 0

Further, the noise sequences wi and v i are assumed to be Gaussian random

vectors with known means and covariances

E W. J 'o for al"i"
-1

E {v i =0 for all ""

21
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E [wiw')= Qi6ij

ii '
where 6.. is the Kronecker delta. In general, the covariance Ri will be con-

sidered to be positive definite whereas the covarlance Qj will be positive

semi-definite. The various random vectors are also assumed to be mutually

uncorrelated so we have the relations

E x wi  = 0 for all "i"

Et-x ' = 0 for all "i"

E _wl = 0 for all "ij"

Thus it is assumed in this chapter that the noise sequences w. and v, arc time-

wise uncurrelated sequences which shall be referred to as Gaussian white

sequences. In the interest of simplicity, at this point we have assumed a

model for the white noise sequences in which the cross-covariance matrix of

and v, is zero. Later in this chapter we shall extend our results to include

the special case whereby wi and v, are Gaussian white sequences which arc

crosscorrelated at time "i." Also, in the next chapter we shall consider the

more general situation in which the noise sequences wi and v i are timv-wie

correlated sequences of the Gauss-Markov type.

3.2 DEFINITION OF TUE DISCRETE OBSERVER FOR STOCHASTIC
SYSTEMS

Loosely speaking, for stochastic systems an observer is defined to be

a system whose output vector, zi 1 , is an estimate of the quantity Tixi+1

with an estimation error, ci+ ! , depending only on the previous estimation

error, € and the plant and measurement noises w1,Vi . To be more precise

22



the discrete time-varying system

= F G + Di (3.6)

Us called an observer of the state of the system

!i = Aixi Biu i w. (3.7)

i= Hi+v 1  (3.8)

if at each instant "i" the following relation holds

z. =Tixi + c (3.9)

where the observer estimation error, - i evolves according to the recursive

equation

M _i = F i + D vi - Tijwti (3.10)

In order that the above relations hold, it is both necessary and sufficient

that the following matrix equations be satisfied at each instant "i"

Ti IAi = FiT i +DAl (3.11)

Gi = T i+1B i  (3.12)

Necessity is proved as follows. Assuming (3.6) and (3.9) to hold, one obtains

the result

(Ti+Ai - FiTi - DiHl)X i + (TIBi - Gilu i

(3.13)
+1- - Dii + Ti+1wi = 0

Since (3.13) must be satisfied for all state vectors x i and for all control

vectors ui, take x i 0 andu = . This implies the following result.
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= F + Di- Ti+i (3.14)

Hence, (3.13) reduces to the following

(Ti+IAi - FiTi - DiHi)x i + (Ti+Bi -Gi)u i =O (3.15)

But (3.15) must hold for all state vectors x. and for all control vectors u., so

take u. = 0 and x. arbitrary. This implies the following result.

TH.1Ai =FiTi + Dil i  (3.16)

Also in (3.15) we may take = 0 and ui arbitrary. This implies the following

result.

G= T iB i  (3.17)

Conversely, assume equations (3.11), (3.12) to be satisfied at each instant

"i". Then from (3.6), (3.7) and (3.8) we obtain the following.

- TH.Xi = Fiz + G.u i + Di(Hix -vi)

(3.18)

- Ti+l(Aix i + Bui + w1)

Substituting (3.12) into (3.18) gives the following result.

- Ti+ixi = Fi.i + (Dil i - Ti+iAi)x+DA- Ti+W (3.19)

Next, since FT i = -(Dill - TIiAi) from (3.11), we obtain the result

- Ti~lXi 1 = Fi(.i - Tj 1 ) + Dil i - Ti+lwi (3.20)

Clearly, (3.20) implies the following relations

-zi Tii +- (3.21)
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C Fe Div i - Tiw.i (3.22)

From (3.22) it is seen that the observer errorfi. I at time "W+1" depends

" only upon the previous observer error at time "i" and also on the noise

disturbances wiv i .

S3.3 AN OPTIMAL MINIMAL-ORDER OBSERVER DESIGN

The discrete time-varying system described by the equations

Zi+1 =F i Gii + Vy i  (3.23)

z. -TiX i + Ci  (3.24)

where zi, an (n-m)-dimensional vector, is called a minimal-order observer

of the state x. of the system (3.1), (3.2) if at each instant "i" the following

matrix relations are satisfied

T +IAi = FiTi + DiHi  (3.25)

G i = T iB i  (3.26)

exists (3.27)

Equation (3.25) is the fundamental observer equation relating the observer

system matrices F i and Di to the observer transformation matrix Ti. In

the design of a minimal-order observer the additional constraint (3.27) must

also be satisfied at each instant "i". Using this fact, a general solution to

the observer equation (3.25) may be obtained. Rewriting (3.25) in

partitioned form

25



- Ti (3.28)

and postulating the existence of the matrix inverse to be of the form

P jyIV (3.29)

where Pi is an n x (n-m) matrix and Vi is an n x m matrix, one obtains upon

multiplying (3.28) from the right by the above inverse, the solution

F i = T i+AIPi  (3.30)

D i = T i+AiVi  (3.31)

From (3.30), (3.31) it is seen that the design of the minimal-order observer
has been reduced to the selection of the single matrix T. This is seen from

(3.29). Specification of the matrix Ti, together with the known measurement

matrix Hi uniquely defines the matrices Pi and Vi and from equations (3.30)

and (3.31) is seen to uniquely define the observer system matrices Fi and Di.

The observer error, Ci, was shown previously to satisfy the following

difference equation.

v ?+ Fe+E- T+w (3.32)["-i 1 =  Fil-i +  Divi - Ti+lWi ( . 2

Using the solution (3.30), (3.31) together with the error difference equation

(3.32) one obtains the observer error covariance given as (3.33).

A ('A R 'A + Qi ) Ti+l (3.33)

-1i--i i i i i i i lii

We shall define the matrix f, to be the following.
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'4I
4AiPi - i Pi eA. +A.V.R.V A. +Qi (3.34)

It will be useful at this point to partition (3.33) as follows.

__ _ 1 d12
-¢i+1 +i Ti+1  i Ti+l' (3.35)

CJ 21 22]

I.I where f is mx m, ~4is (n-m) x(n-m) and& 2 - 21' ismnx (n-m). The

submatrices &119 '42 and 42 are obtained as partitions of the matrix i

defined by (3.34).

Equation (3.35) plays a fundamental role in the optimal observer

design to be developed. We shall next obtain the covariance matrix of the

overall estimation error. The estimate of the state vector x is

obtained as follows. (The notation -i+l shall be used to distinguish between

the optimal Kalman filter estimate and the observer derived estimate.)

Combining the observer output zi+ I with the measurement Yi+l gives the

following.

-i+ -(3.36)LiI Hi+l -i+l L-i+l

Using the matrix inverse postulated as equation (3.29), we obtain the estimate

A 11-- AXiIi~ Il"1

The resulting estimation error is found to be
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47

-C. ~ -+I
Ii+l -i+l ti+ V i+1 [v.

I Ei~I

Finally, the error covariance + may be obtained as follows.

E£Li+l Pi+1IjlR+ ]i1 1  ii 1~
0 R i+1

(3.39)

where from (3.32) it may be shown that 0.

To proceed further, some necessary assumptions must be made about

the form of system (3.1), (3.2). It is, of course, assumed that the measure-

7 ment matrix be of maximal rank at each instant "i" in the interval of interest.

In the absence of measurement noise, if H i did not exhibit this characteristic,

then some of the measurements would be linearly dependent and, hence,

redundant, so that the measurement vector could be reduced to a linearly

independent set without any loss of information. In cases where the system

outputs are corrupted by measurement noise, there may however be important

reasons to -onsider all the system outputs, including any redundant ones.

We shall not, however, treat this case but shall consider only matrices H i of

full rank.

More specifically, it is assumed that the first "m" columns of Hi (with

a possible renumbering of the states) are linearly independent for all "' in

the interval of interest. This is a reasonable assumption In view of the fact

that usually thq system outputs are affected by the same state variables even

though the gainis involved may vary with time. In many physical systems H1
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will actually be a constant matrix even though the matrices Ai. Bi are time-

varying. Therefore H1 may be partitioned as follows.

H. = H(')IH2 (34o

where is nonsingular at each instant "i" in the interval of interest. Next

we shall assume that H is identically zero since the linear transformation1

-;iA (3.41)"" --Xi= 0n-m .

will transform the original system to the desired form shown in equation

(3.42). Therefore, without loss of generality, it will be assumed that the

measurements are of the form

Yi = Elm I 0 1x i +v (3.42)

To complete the basic observer design, it remains only to specify the

observer matrix Ti . Since the matrix L.] must exist at each instant

"i", the most logical choice for the matrix T is given below as (3.43).

T i =EK i I n m 1  (3.43)

K is an arbitrary (n-m) x m gain matrix which will be chosen to minimize

the overall estimation error. With this choice for the matrix Ti, the

matrices P1 and V1 are found to be the following

Pi & Y Vl { (3.44)
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Substituting (3.44) into (3.39) gives the following result.

I R+i+ +-i+ R K(3.4)

Ti +-TK i+lRi+l +1+ '- + K1 i+l1+l i+l(

Also, substituting (3.43) into (3.35) gives the result

• I i ,

=K iKi+1 +0K1+1  2 + jK<i' + (3.46)

The optimal gain matrix K iil may now be determined. From (3.45) and

(3.46) one obtains

trace ei+ei+1 = trace Ri+ 1

(3.47)
+ trc b" + 2

+trace fKi+l(0 +1+R+l) K+ 1  Ki+ld 1 2 + Ki+ +22

"Completing the square" in (3.47) gives the result

trace ei+il = trace R

+trace fCK. + fl +i+,) ],i +R I[K +1+1 21 11 Ll 11 M~ ~
(3.48)

+ 10~11 + 4i+l~+ 2_'l('1+ R+)'12'I I M I 12]

The desired optimal gain matrix, Ki+l*, is obtained by minimizing the

trace ei+i. By assumption the measurement noise covariance Ri+1 is

positive definite. Clearly, the submatrix il is at least positive semi-11

definite so that the matrices (01 + Ri+,) and ( 1l+Ri +) are positive

definite. Therefore the matrices
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[K +R ]N i +21(01+R+,-

EKi+O i(1i +2R1i+) ][j +M

(3.49)

and

nR (3.50)

must have positive diagonal elements. The minimum of the diagonal

elements of ei+lei' must therefore be attained when

Ki+l +21h (fol +Ri) 0 (3.51)

Clearly the optimal gain matrix K! is given by the expression

K W =-f2 1(lll + Ri+) (3.52)

The minimal estimation error obtained when Ki+* is taken to be the observer

gain matrix is found by substituting equation (2.39) into equation (2.35). Thus

it is found that

min trace ei+lei+i' = trace R i l + trace 22 - 21( I+Ri+l)'I02

(3.53)

Design of the optimal minimal-order observer is essentially complete at this

point; it remains only to specify the resulting observer dyn mical structure.

Previously it was shown that the observer matrices were of the form

= Ti+IAiPi and Di = TI+iAiVi. Straightforward substitution of the observer

transformation matrix Ti+1 rquacion (3.43)] and the corresponding matrices

P1 and V1 [equation (3.44)] results in the following
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i 22 i(

DK K = AA -A (3.55)

A 2 1  A22K + KiIi I A12K1)

Also, the matrix Gi is defined explicitly in terms of the observer transfor-

mation Ti+ 1 and the plant matrix Bi according to the relation

Gi =T iB i  (3.56)

A block diagram of the basic observer structure is shown in Figure 3.1 along

with the appropriate defining equations and the algorithm for obtaining the

optimal observer gain matrix.

3.4 INITIALIZATION OF THE DISCRETE OBSERVER

In the case of the recursive Kalman filter equations, the a priori

statistics x and M of the initial state -xo are assumed to be known. This

a priori information is needed to initialize the Kalman filter. Since the

optimal observer equations (3.35) and (3.52) are also recursive, this same

information is needed to initialize the observer. We shall therefore assume

that the a priori statistics A and M are available to the observer system.

Initialization of the observer proceeds as follows. Let zI = T 1 1 be

the observer initial condition, where i 1 is the "expected value" of the state

vector x1 . Since _ = 11 - T 1 1 , then

_ - € -T 1 ,x ll)Lxl'-_11) ' T 1 ' (3.57)

But - A (xio- x + hence (3.57) becomes

.C- 'Tj(AoMoA o I+ Q ) T' (3.58)

To initialize the observer, define the covariance matrix Q 0 to be

o - oMoAo " + Q3 (3.59)
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.f, r rir i ri. ---- i •-

and take the optimal gain matrix K to be

K1 ='-(d 1
1 +RI)1 (3.60)

3.5 SPECIAL-CASE: CROSS CORRELATED PLANT AND MEASUREMENT

NOISES

In the interest of simplicity we have assumed that the original model of

the Gaussian white noise sequences is one in which the cross-covariance

matrix of w.i and v i is zero. We shall now treat this important special case in

which the cross-covariance matrix of and v is non-zero and we shall show

that the observer design technique described in the previous sections of this

chapter is directly applicable to this special case with only minor modifications

to the theory. At this point we shall assume that the zero-mean Gaussian white

sequences wi and v. are characterized by the covariance relations:

E wiw.' = Q.6.j

E tv,v') -i 6 ij
E [wi. v'} =R s6ij

We begin by computing the observer-error covariance matrix. From the

basic observer-error equation (3.10) we obtain the result

.l+ll+l = Fi.T.C F1 ' + D1f i 'D.' + Ti+ _ T Tl

(3.61)
- D"y' 1 T4 1i:| " .~~D DY"' Ti+I  Ti~Wi Di

But since F I = TI+IAIPi and D = Ti+IAiVi, substituting these relations

*into (3.61) gives
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=T--(AiPi -- C-P 'A + iR A.i i Ti+l!4+l 't+l e  i.+. + AiZ4tii +QLI I )

':)" Ti+l(AiViSi +' S, i *Vi Ai )Ti+l e  (3.62)

4-,

Hence, the same general form of solution is obtained as in the previous

*: uncrosscorrelated noise case. Defining the matrix Q. to be

C, i = Ai Pi-Li1 ' i A i +" A VI~iV i 'A "i + Qi

(3.63)
" AVSi " S IVI A

and partitioning (3.63) as before we obtain the result

=Ti+l I. 2 Ti+ 1 ' (3.64)

It is immediately obvious that the observer design developed previously in

this chapter applies without modification from this point on. For the sake of

brevity we shall state only the final results. Taking the observer trans-

formation matrix T i+ to be of the form

Ti+1= [Ki+ 1 lIn-ml (3.65)

The optimal gain matrix K is found to be

Kil Q 21 (0,11 + Ril' ) '  (3.66)

where the matrices i and 1 are obtained from the partitioned Z matrix

as indicated in (3.64). The cross-covariance matrix, Si. alters only the

computation of the 0 matrix as indicated in (3.63).
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F:- 3.6 EFFECT OF COORDINATE TRANSFORMATION ON OPTIMAL GAIN
MATRIX, Ki*

Up to this point it has been tacitly assumed that "without loss of

generality" the given system (3.1), (3.2) was already in the desired canonical

form. However, the phrase "without loss of generality" needs to be justifitd

since for many dynamical systems the desired canonical form cannot Ix

obtained directly by merely renumbering the state variables. We do, how:vcr,

assume that the system measurement matrix, li, can be put into the form

(3.40) and then the linear transformation (3.41) applied to obtain the desired

canonical equations. If this transformation need be used, then there will

be a modification to the optimal gain matrix, K due to the linear trans-i+l

formation (3.41). We shall now consider the effect of this linear trans-

formation upon our optimization technique and, in particular, we shall derive

the optimal gain matrix taking into account the effect of the linear

transformation (3.41).

Assume it is necessary to apply the linear transformation Misi ,

where Mi is defined in (3.41). Upon performing this transformation we have

the measurements

Elm I 0 1% +v.

Let the observer be defined by the system (3.6) where now we take the

observer output to he

Sz = KI1I] + . i  (3.68)

Combining (3.67) and (3.68) together with the fact that = Miq. we get the

result

36



H H . .

[C ][ HY]X. + [L](3.69)

From (3.69) the overall estimation error covariance is found to be the

following:

H _ll- 1 IH (2) R 1K

0 -1 R1

L" H. ) ][.H. H(2)

0 1

nn-m

Equation (3.70) is simply the statement that the error in the x. coordinate

system is M i times the error in the _qi coordinate system. That is,

ii

-i)- Mi0 - r) (3.71)

Performing the matrix multiplication indicated in (3.70) and taking the trace

gives the result

tracei ' = trace [Z -'+K RK
SI-"i i "

'"- L 421( 1 1 3.7)KHi.)" trace H (') H( ) R (Hi(1) () (.2
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where the observer error covariance is of the form

£.'K 0'K 1 + Y L( K+C, (3.73)if i 1 i 1 12 21i2

Setting the gradient of (3.72) (with respect to the free gain matrix, K j) equal

to zero gives the first order necessary conditions for a minimum. Since

(3.72) is quadratic in Ki, these first order necessary conditions are also

sufficient conditions for a minimum.* To obtain the gradient of (3.72) one

first substitutes (3.73) into (3.72) and expands the trace ee'as follows.

traceij tr((f''+ )K +2r 21 ']tr22

+ tr [( . ' j 1
1 K1L + 2 tr t( . )'j

+tr [(. )'( . )K 1 1 + 2trI )H .(1)R K iI

+ tr I( H1 (1) ')I(1' I I
F (3.74)

wher ( . ~ H(2)
where-)4 (1) 1H

Using the formiulae given in Athans E6] the gradient of (3.74) is

evaluated and set equal to zero giving the result:

HIl R (3.75)
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But since the matrices +(*)(*) n ~~'+R) are positive definitc

(hence invertilc) we obtain from (3.75) the result

qi , ( +[ + R

where

L * J: l+(-) ) ( I ) Hi  Ri  (3.77j

Finally we note that for the special case where H. (2) is identically zero, the

term F * ] is identically zero and the optimal gain (3.76) reduces to the

result (3.52) obtained previously.

3.7 GENE,(ALITY OF THE TRANSFORMATION T, = [K. i m

At this point one might ask if the consideration of a more general

observer transformation, T, could result in a further reduction in mean-

square ebtimatiuon error. To be more specific, can the mean-square

estimation error be reduced even further by taking T = [K<(I)IN (2) - instcad

of u-,ing the less general transformation T. = [Ki(1) Il ]? The answer to
I n-rn

thi.s question is an unequivocable "no" and in this section of the thesis wc

shall present ai proof of the claim. The proof is straightforward.

We assume that the measurements are already in the desired

canonical form, that is:

yi= [Im O]xi +vi (3.78)

We consider the most general possible observer transformation, Ti, which is

of the form
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[K ()K 2 )x + -. (379)

where K.(I) and K.12) are (n-m) x m and (n-m) x (n-m) partitions of the

matrix Ti. Since the matrix inverse l~AI is required to exist at each

instant "1" then we have the result

det = det[K.i 2 ) ] (3.80)
Ki

and therefore we consider ali transformations T [K (1)1 1K (2) ] where K(1)

and K (2) are arbitrary and K.(2) is full rank at each "i." We shall now prove

(2)that at each step "i" there is no loss of generality by taking K. = I and
I n-]

this is because the minimum achievable mean-square estimation error is,
in fact, independent of the elements of the partition K i(2)

In the first step of the proof we treat the initialization of the observer.
Computing the mean-square estimation error at time "i=l" we obtain the

result

trace trace R

+ trace K( - (21 + K K (1) 'K (2)1

(3.81)

But the observer error covariance is _-' - T Cio T where f0 A M UA o
+1- Q lo so 000digEl

+ Q so expanding- in (3.81) into quadratic terms involving the

appropriate partitions of the matrix [i gives the result (3.82).
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0 K K (2 + ]K (2 ,

(.+,. +K (2) K (2)K-'- 43.82)

Substituting (3.82) into (3.81) and "completing the square" gives the

'" expression

0 0 1A -+ 1-1(11 + I) + ff 102 +U R)(.3R i] 22 21 11 1

Clearly, to minimize trace e we take

-1 

S

K( 2 ) ~' +O o1 . R) o0 (3.84)
1 1 "21111 R1

and the minimum attainable mean-square error is given by the result

mi trace e e = trace R +trace trio- 1 ( +R no

(3.85)

We note at this point that the optimal error (3.85) is attained independent

of the particular choice of K (2). Hence, the minimum attainable mean-

1

2:°'

square error is independent of the partition K (2) and we may without loss of

generality take K (2) I

For all cases n=2, 3, ... i, i+l the solution proceeds as follows. At

time "il" the equations of interest are the following:

7. 
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= [ 1~x~1 +v~~li+l U-Jm 10 1xi~ l  i+1

S= [K 11) IK( 2 ( + (3.86)i~l i~l' i+1 x i+l + :i+l 3.6

Also,

-Ti+ +I CI i i+1

where

-. A.P..-C.P. 'A.'+AiVRV. 'A. +Qi (3.87)
i I r-r--i 1 1 i i

Repeating the procedure described for "i=l" we find the mean-square

estimation error at time "iI" to be

trace ei+leeie = trace Ri.I

trace [I< d R
+-r ,fi R+1 , - ] II+ ]"- - ,(2 ) 1

7*[ K (2) + Ii

-'-. + il (i" 1 ' (3.88)

Clearly, to minimize trace e mli.~l ' we take

K2  (1) ++ =0 (3.89)
1 1 i1 1 1 so

4The minimum attainable mean-square estimation error at time "1+1" is

given by the result
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i+
i trace e. (e .il

*: and this optimal result (3.90) is attained independent of the particular

choice of K(  Therefore, at each step n=2, 3, , -i+, without lossj+l*
of generality, we may take K(2) = Inre

3.8 EQUIVALENCE OF OBSERVER AND KALMAN FILTER WHENRi = 0

Up to this point it has been a basic assumption that the measurement

noise be non-zero and, in fact, it was more strongly assumed that the

measurement noise covariance, Ri, be positive definite at each instant "i."

This corresponds to the case where each measurement component is

contaminated by an independent white noise disturbance. A special case of

particular interest is the opposite extreme where the measurements are

completely noise-free, that is, vi = 0 for all "i." We shall next treat this

important special case.

Rather loosely stated, in the absence of measurement noise, "m"

of the system states are known exactly and it is only necessary to estimate

the remaining "n-in" states. In this particular situation it is clear that the

Kalman filter is degenerate in the sense that it reduces to an "n-m" dimen-

sional filter. Noting that the minimal-order observer is of dimension "n-m,"

one questions whether or not in this situation (i.e., in the absense of

measurement noise) the optimal minimal-order observer is equivalent to the

Kalman filter In the sense that both filters provide identical mean-square
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estimation errors. We shall demonstrate that this property is, in fact, true.

We assume the system equations are in the form

Ai l A AI2 )W
11 12 -1 I-'

,+, (3.91)

L 21 22 i

.~~[ l. Y ol ]X. (3.92)

For purposes of simplicity the plant noise covariance is assumed to be:

- 0

-- I (3.93)

0 Q(2)]

Using the i(alman filter algurithms (sue Chapter 1, equations

(1.3) through (1.6) it is easily verified that for the system defined by

(3.91), (3.92) the mean-square error for the Kalman filter is

trace P+I/i =

-I .2 i 2)'
trace I p A''+ 0 2(A 22 Pi/i A22 /

(3.94)
- 2/ 1~A2' ( iA/iA1 +QU)J 221

where the covariance PH-+/H+, is partitioned in tne furm

Pi+l/i+l 0 (2) (.5

L-4iPi+l/i+l

[ ro ]

,,l~w1 . I ,."":± "- - -- '" "-'



Next, from the observer error covariance C. i+ which is

12 -1i 1 i 2 +Q12 -2i-i 22

-i+l +1"i+1 A' r-A- , ,"--A i 2 -i+ 1
A22-iI A12 A22vi A22 +-

(3.96)

it is found that the optimal observer estimation error is

trace e -

trc (i^., i, (2) .i - ,iUT
trace ( --- A22 A22--1-- A12 ' (A'2-i--1 'A2

+ Q I)) Ai A'" (3.97)
-- 12-:i-Ei 22

Equivalence of (3.94) and (3.97) follows directly from the result that in the

case of no measurement noise, ,.) = This result is obtained by-1-1 i/i

inspection of the observer estimation error covariance and the

. corresponding relation P fur the Kalman ftur.

45

---------- 
. .-



4. OBSERVERS FOR DISCRETE SYSTEMS WITH
GAUSS-MARKOV NOISE INPUTS

4.1 INTRODUCTION

In the previous chapter we have limited ourselves to estimation

problems in which the system disturbances were modeled as purely random

additive white sequences. Clearly, in many estimation problems the system

noises will be modeled more accurately as additive Gauss-Markov sequences

(time-wise correlated noise sequences). Sequentially correlated plant noises

can, in principle, be treated by introducing shaping filters driven by purely

random white sequences resulting in sequentially correlated sequences. [29

Howe'er, in the design of the Kalman filter for systems with sequentially

correlated noise inputs it is necessary to increase the dimension of the state

vector to be estimated. This is inconvenient for real-time filtering and,

equally important, the computation of the Kalman filter gains is very likely

to be ill-conditioned. Thus it is desirable to seek better ways to handle

sequentially correlated plant disturbances in estimation problems.

4.2 OBSERVER DESIGN FOR SYSTEMS WITH GAUSS-MARKOV PLANT

NOISE

We shall now extend the results of the observer theory developed in

the previous chapter to the problem of estimation in the presence of time-

wise correlated plant disturbances. This problem shall be treated in a

straightforward manner, that is, the state equations of the plant will not be

augmented as must be done in the Kalman filtering theory. Taking this
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direct approach will result in an observer of minimal dimension. To be more

precise, the dimension of the minimal-order observer will be the same as

for the case when the plant noises are purely random Gaussian white

sequences. The order of the observer will therefore be independent of the

dimension of the linear system required to generate the Gauss-Markov

sequence. The resulting observer is not designed to provide estimates of

the extra states which model the plant disturbance; only the original system

states are estimated. This is highly desirable since, in practice, one usually

is only interested in estimating the original system states. We shall first

consider the problem of estimating the system state vector, x i , where the

noise term wi is a Gauss-Markov sequence.

Again we consider the discrete system

X. =A x +B.u +w. (4.1)
-i+l i=i iPi -1

Sx Hxi + vi (4.2)

The measurement noise, v i , is taken to be a Gaussian white sequence with

covariance

E 'I = Ri6.i

However, in the present case we model the plant disturbance, w., as the out-

put of a linear discrete system driven by a zero-mean Gaussian white4
sequence. The plant disturbance, wi, is therefore a zero-mean Gauss-

Markov sequence generated as the output of the following system.

0 wi+l = r1 w1 +r (4.3)

where 12i is a Gaussian white sequence. The covariance matrix of the noise
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vector, wil 1 , denoted as Qi+ 1 is propagated sequentially according to the

relation

+i- QiFi o ' (4.4)

As was done in the previous chapter, we will design a minimal order observer

of the form

szi~ = Fz. + Giu i +D.vy (4.5)

where z is an (n-rm)-dimensional vector and

= Tix i + r. (4.6)

As before, the observer error evolves according to the recursive equation

= FCi + Divi- T M w (4.7)

In this case, from the basic observer error equation (4.7), we obtain the

observer error covariance

C T = -(APC-.'P 'A +AV A + Qi) T '

(4.8)

" Ti+l (A PCwT' + -wi'T 'Pi *Ai') Ti+1'

In obtaining (4.8) we have used the results that Fi = Ti+IAP i and Di =T i+AV i.

At this point it is noted that the error covariance (4.8) is similar in form to

the corresponding expression obtained for the white noise problem considered

in the previous chapter [see equation (3.33)]. This suggests the possibility of

applying the same observer design technique developed in the previous

chapter to the present problem with sequentially correlated plant noise.

However, when the plant noise is sequentially correlated, the observer error
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covarlance (4.8) contains extra terms due to the fact that the observer error

at time "i" is correlated with the plant noise at time "i". Before proceeding

with the observer design we shall digress momentarily to evaluate the cross

correlation W needed in the solution of the observer error covariance

(4.8).

From (4.7) we have

i-I i-i

= F 1IEI+, i, j+ID.- 1  Fi j+ 1 T j + I~ j  i=2,3,

(4.9)

where we shall use the notation

F. An Fi, j k=jk

and Fi 1  for all "i". Initializing the observer as described previously

in Chapter 3, the initial observer error becomes

_.E -- TIAo Xo-_.) - Tlw (4.10)

Next, using the relationships

E( )w. -0 w-for all "i"[7:: (4.11)

E (v w = 0 for all "i,j"

One obtains the result
i'i-I

'- . F T ww i=1,2,... (4.12)
j30 i, j+l J+1 -j -i

From the solution to (4.3) which is
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i - i-i

7i-.

w.=. w. + f. - i >j (4.13)
-I W,-jj i k+l-k

k=j

one obtains the result

S=ww. = (4. 14)
-j - -J -J i,j J I

where the covariance Q. is obtained from (4.4). SubtituLing (4.14) int,

(4.12) gives the expression

i-I

-1~ ~~'= - ~ F Tj+l Qj"I (.-- 1 -1 i, j+l
J=o

An extremely desirable property from the standpoint of filtering and

processing of measurement data is the recursive nature of the filtering

equations as, for example, in the Kalman filtering technique. Although

(4.15) characterizes the cross correlation Cw.'%v it is not in the desired

recursive format. To obtain a recursive equation for i\w., consider
expanding (4.15) as follows

__________ i-I
SFi+l, j+T - T Q (4.16)

J=o

Using the properties of the transition matrix, F i, j and the fact that

F = AP. it may be shown that (4.16) is of the form
* il ill

' .'..'..'.'' .' -Q i)  F.'i+l -i+l =Ti+(AiPi -- Q .

where (4.17)

-T1
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Returning to the problem of designing an optimal observer for the

system (4.1), (4.2), we again assume without loss of generality that the

measurements are of the form

I'm= [1:0 x i +v (4.18)

V I

Thus, the same observer structure used previously in Chapter 3 will ixb

employed here. The observer output is therefore taken to be following

Z 11 I X + C" (4.19)
*i i --1 1

where again we seek the optimal gain matrix, K , to minimize the overall

mean square estimation error. Following closely the approach of Chapter 3,

we begin by partitioning the observer error covariance (4.8) as follows.

i L  2 1

SC- T T .1 Ti+I ' (4.20)
,21 i  n 22

where the partitions of the matrix Li are conformable with the partitioned

matrix Ti. In the present case, the matrix a, is defined by (4.21) below.

- P. T, Pi A +A Vi R VIA +Q

-A P,- w i P i''A.' (4.21)

The next step in the observer design is to obtain the overall

estimation errore From this point on the results are essentially identical

in form to the white noise case considered in Chapter 3. Omitting the

unnecessary details, we obtain the result
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trace ei+ei+I  trace R i+I

(4.22)

+ rc Ki+l( , 11+Ri+,) K i+l t+ K< i+l "r212L + f 21 K i+l '  22i

-Comparison of (4.22) with (3.47) of the previous chapter leads to the

obvious conclusion that the optimal gain matrix is identical in form to that

obtained for the white noise case. Hence, the optimal gain matrix is given

by the expression

i~ L1* *+ Ri) (4.23)

where in the case of a Gauss-Markov plant noise the computation of the

matrix f.. is modified to account for the cross correlation between the

observer error C. and the plant noise, wi.

4.3 OBSERVER DESIGN FOR SYSTEMS WITH GAUSS-MARKOV

MEASUREMENT NOISE

Next we shall consider the problem of sequential estimation of the

state vector xi of the plant (4.1), (4.2) using a minimal-order observer where

the measurements are corrupted by a colored noise of the Gauss-Markov

type. The plant noise, w i, is taken to be a Gaussian white sequence with

covariancu

E [wiwvj  = ij (4.24)

However, here we model the measurement noise, vi, as a Gauss-Markov

sequence generated as the output of the discrete system

V .. v + (4.25)
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is a zero-mean Gaussian white sequence. The covariance matrix of the

measurement noiseVi 1 , denoted as Ri+i, evolves with time according to

the relation

Ri. 1 = 6.~ 1+ 77 (4.26)

We shall next optimize our canonical observer design'based upon the system

model described above. From the basic observer error equation (4.7) and

the fact that F = T.AP and Di = T. 1A.V. it is easily shown that the

observer error covariance is of the form

=Ti (AiPi7' P "A+A ViRV 'A + Qi ) Ti.

+T.+-(AP-e . Vi'A. +AiVic P.eA.) ' (4.27)i Ti+l

Noting that the observer error covariance (4.27) is essentially in the same

form as (4.8), it is clear that the canonical observer structure used

previously may be again utilized for the problem of colored measurement

noise. Before proceeding with the observer design it will be necessary to

obtain a recursive solution to the cross-covariance needed in the

evaluation of the observer error covariance (4.27). From the basic observer

error equation (4.7) and the properties of the noises wi and v. [namely (4.24)

and (4.25)1 one obtains the result

i-I

f . Fv i. j+  D vj ' i=2, 3,... (4.28)-ii ij l J-i-1

Since the observer is initialized as in (4.10) we have that

= 0 (4.29)
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C. .

From the solution of (4.25) which is

i-i

where G. n el and e. 1 for all "1" we obtain the result
Sk=j ,

v~.=. G. .. 'R6.* (4.31)

and the covariance R is obta:n:d from (4.26). Substituting (4.31) into (4.28)

gives the result

i-if

Next using the properties of the transition matrix F~ and the relationships

F..= T M A Aand Di=Ti+ A V it may be shown that (4.33) is equivalent to

.the recursive expression

.~.~ij~i =T 1~1 (A P1 fv.1 + AiV 1Ri) ei'

wvherc (4.34)

v 0

Without loss of generality we shall again assume the measurements to be of

the form (4. 18) and take the observer transformation to be of the form (4.19).

As before, the observer design is optimized by obtaining the free gain

matrix K 1+ which provides minimum overall mean square estimation error.

The matrix jdefined below, is partitioned as described previously

[see (4.20))
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Ot - APi Tj'Pi'A^' + AiViRiVi'i ' + Q

(4.35)

+ AiPi _.iT' Vi'Ai' + AiVi--- v Pi "A i '

where £i'iTiOT-i~-i = Ti+l i Ti+1

Using (3.38), (3.44) the total estimation error covariance is found

to be

C. K
+,Xi+l Viil R K i-. '-I

M-+1 i+

(4.36)

Before proceeding with the minimization of the mean square

t:--:

estimation error we shall rewrite the quantity E.y. in a more useful

form. We partition (4.34) into the following form

:,"i +Iyi+l = Ti+l (4.37)

"11i  22

where r is the upper m x m dimensional partition and Tr is the lower

(n-m)xm dimensional partition. With this definition it can be shown that the

mean square eitimation error is given by
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trace e,,,, = trace RW~

+ trace IK+ C1' +R~ + (4.38)

++(1 n I-TTi) + (2 2ii- Tr22i) 1<i+i' + 022 i

Setting the gradient of (4.38) with respect to the gain matrix K i1equal to

zero gives the result

~~~~ +R+) +( 2 iT i) =0 (4.39)

The minimizing solution is given by the following expression [1, 12, 24]

K~l =- 1 2 2  ( 1 -Tv 1 - 1 I" + Ri+j) +(4.40)

where( + is the Moore-Penrose pseudoinverse.
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5. EXAMPLES ILLUSTRATING THE THEORY

5.1 INTRODUCTION

In this chapter we shall illustrate the application and utility of the

observer design techniques developed in the preceeding chapters 3 and 4 of

the dissertation. Toward this end we shall consider an important practical

problem, namely the design of a radar tracking system (sometimes

referred to as a track-while-scan radar system) based upon the previously

developed theory of optimal minimal-order observers. In particular we

treat two special cases and these are presented in the following sections of

this chapter as examples I and 2. The purpose of these examples is to

demonstrate in a clear and straightforward manner the usefulness of optimal

minimal-order observer theory to an actual and realistic design problem. In

the interest of simplicity we have selected target models for our examples

which are sufficiently simple so that the resulting observer design equations

are not too unwieldy and cumbersome. However, the target models will be

sophisticated enough so that the results of this design study are realistic and

provide useful design information in a real tracking situation.

In the first example we consider tracking targets having white noise

acceleration inputs, that is, the target maneuver is a white noise sequence.

-The maneuver, therefore, at one sampling period is completely uncorrelated

with the maneuver at a different sampling period. This siouation prevails

when the target exhibits constant velocity except for random disturbances.

Also, the measurement errors are assumed to be Independent from measure-

ment to measurement. Typically, ballistic missiles, orbital and suborbital
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targets are modeled in this way. Example 1 is intended to demonstrate the

basic optimal minimal-order observer design for systems having white noise

distrubances as treated in Chapter 3.

In the sequel we shall, of course, compare the resulting performance

of the best minimal-order observer tracking system with the performance

obtained from the corresponding theoretically optimal Kalman filter tracking

system. Also, in our comparative study we shall investigate the constant

eigenvalue observer designs of Dellon [10] and Williams [32 and we shall

compare the performance of these designs with the best minimal-order

observer design.

In the second example we treat a slightly more sophisticated (and

perhaps more realistic) target model, namely the case where target

acceleration is characterized as a time-wise correlated noise sequence.

Physically speaking, this is interpreted as the situation where if the target

being tracked is accelerating (maneuvering) at time instant "i" then it is

also likely to be accelerating (maneuvering) at the next observation time

instant "i+l." Typically, manned maneuvering targets such as aircraft,

ships and submarines are generally modeled in this way [27 ]. Thu

maneuver properties of a particular target are characterized, therefore, Ly

two parameters, and these parameters are the target maneuver variance and

correlation time or time constant. In the second example we shall treat the

maneuver variance as constant and shall vary the maneuver correlation time

in parametric fashion. Hence th. resulting tracing accuracy of the best

minimal-order observer tracker and the Kalman tracker is, for the most

part, presented graphically. In this way a large class of manned

maneuvering targets is considered and the performance of the tracking system
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for any single particular target is obtained from the graphs by specifying its

particular maneuver properties. The purpose of example 2 is to demonstrate

the application of our optimal minimal-order observer design technique for

the case of systems with time-wise correlated noise inputs as discussed in

Chapter 4 of the dissertation.

5.2 EXAMPLE 1

To illustrate the application of minimal order-observer theory

in a practical design situation we shall consider the following standard radar

tracking problem. For purposes of simplicity we shall treat only the special

case of a single spatial dimension. In particular, the target motion is

confined to motion along the x-axis of the usual cartesian coordinate axes and

the radar is assumed to provide range measurements along this same x-axis.

Mathematically the target equations of motion for this simplified one-

dimensional radar tracking situation are given in state variable representation

by the following L281:

=~ [0 1 + 0 w. (5.1)

I'I

..

*ai+l =Ailx+ W
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X.

110 0+v. (5.2)

_x

I"I

= H x1 +v

As indicated in (5.2), the position of the target along the x-axis is

measured by the ground radar. The measurements contain observation noise

which is represented by an additive zero-mean Gaussian white sequence, vi,

having variance a 2 (measurement noise variance). Practically speaking, the
v

radar measurement error would be range dependent. However, in this

simplified example we shall take the variance, o 2 to be constant. In (5.1),

the input w i represents the change in target acceleration from time "i' to

time "i+l" and for purposes of this example w. is assumed to be a zero-mean
i

2
Gaussian white sequence with variance " (maneuver variance). The data

rate, T, is assumed to be constant so that target position is observed every

T seconds.

One additional comment concerning the observability properties of

this system is appropriate at this time. It is clear that the system (5.1),

v - (5.2) (defined by the pair of matrices (A,h)) is observable in the sense of

Kalman (16]. Checking the rank of the observability matrix we obtain the

* "result h, .1i 0 0 1
Det ;DetI T T2/2 T' (5.3)

L:A I 2T 2T2
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Hence the system defined by (A,h) is observable in the usual sense for all

data rates T > 0.

Kalman's filter fcr the system (5.1), (5.2) is a 3-state filter

defined by the following equations:

-i+1/i+l =-i+il/i " Ki+l (xijH - Hi-F -jj.-1/) (3.4)

where Kalman's gain matrix is

K P Hi~ (Hi+l H + R(55
i~ i+I/i P+Ii+l/i i +  Ki+d) 55

and

- = A xii (5.6)

The n-vector x is the minimum mean square estimate of x g
-i~l/xil given

measurements up-to and including time "i+1" (i.e., the filtered estimate)

and is the minimum mean square estimate of xi+1 given measure-

ments up-to and including time "i" (i.e., the one-step-ahead prediction).

The nxn matrices Pi+i/ i+ and Pi+l/i are the covariance matrices of the

filtered and one-step-ahead prediction errors, respectively. These matrices

satisfy the following recursive equations.

Pi+/i =Ai Pi/i A + Qi
(5.7)

pi+l/i+l 1 (In -K 1+l Hi+l) P,+,/i

Design of Kalman's optim~al linear filter is essentially complete at this point.

The structure bf the filter is given in equations (5.4) through (5.6) and

initialization 6f the filter is performed in accordance with (5.7).
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Finally, following the approach taken by Singer and Monzingo [281,

we shall initialize the K alman filter equations by taking as the initial statc

e$timate

o/o = Yo

13

measurements received. The corresponding covariance initialization

equation for (5.8) is given by the following:

2 2
2 I 3 v

v 2 T 2
"'" T

2 2 2 2 2 2
v 13 v m v m (5.9)

=/ 2T I 2 T T--T-  T -3 8

2 6-2 r; 2T I 2 5 2
v ..v + m v + n......

T TT

Since Kalman's linear filter provides the best attainable

performance in terms of minimizing the mean-square estimation error, it

will provide us with a useful upper bound to tracking filter performance.

Hence, our purpose in presenting the Kalman filter here is to provide a

reference against which the performance of our minimal-order observer may

be compared. We shall next present the design equations for the

minimal-order observer.
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Design of the optimal minimal-order observer for the system

described by (A,h) is relatively straightforward and involves evaluating the

design equations derived in Chapter 3. We note at this point that the state

equations for the system considered in this example are already in the

desired observer canonical form (that is, transformation of the state equations

to a new coordinate system is unnecessary, and therefore the basic design

equations of Chapter 3 apply without modification. For convenience we

tabulate the appropriate design equations below.

Ti = [K<i~lnm (5.10)

P. (5.11)

i ,i I-i

Ki+l "2:ll + Ri+l)" (5.12)

A'i (5.1 3)
Fi A22 K i+ A12

D.=A' -A 2 K+ (All -A.i.b(14i 21 22 Ki Ki+I 12 i).

We shall present next the solution to the minimal-order

observer equations given above. Since the system defined by (A,_ has n=3

state variables and m=l output measurement, the dimension of the minimal-

order observer is n-m=2 and therefore the observer transformation, Ti,

satisfies the relationship

z. T x +C

where
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, , , , ,iII I - . ._ i - -• - - V. -

ii

1 1 J
Ti k(2 )  (.s

I 0

K. 12
12

Hencv, Ti is a 2 x 3 rectangular matrix containing the arbitrary gain

elements k( l ) and k 2) . These arbitrary gain elements are adjusted in an
i L

adaptive manner to minimize the overall mean-square estimation error at

each time instant "i." Computation of the corresponding P. and Vi matrices

results in the following:

[00r 11
P Vi  -k i) (5.16)

L o LJ-k(2 j

The estimate of the state vector x is, of course, given by the following

x = P. z + Vi Yi (5.17)

with P. and V. as defined in (5.16). Next, the observr transition matrix,

Fi, is found to he for this example

[I ] 1
F. [ + J (5.18)

ii
A22J K i+I A12
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rr 1 T - ..... k .1 i \
" I I im r

A 1  2+ 1 [ 1 12 11

(5.19)

Since the three defining matrices (Ti, F, Di) have been specified uniquely in

terms of the unknown adaptive gain elements k.( ) and 0 2) [see equations

(5.15), (5.18) and (5.19) J, design of the basic observer structure is

essentially complete. It remains only to specify the computation of the

optimal gain matrix Ki (that is, the optimal gain elements k( ) and k

and to describe the observer initialization technique.

Determination of the optimal observer gain matrix, Ki+l is a

recursive procedure which uses the covariance matrix

2= APi P 'A. 1 AiViR.V A. + Qi. For the system defined by

the state equations (5.1), (5.2) the matrix s. is found to beT= [ T /2] .'2 5

t..= 1 T. -

.- -2 2 / 2Tk /2 T I

2 1 Ai P 'A. (5. 2U)
z2 2

I i

1-01 _ I

J2 6• k ( )  2 ) T 2 - k ) -k ( l ) -  k (2 T k (2 )
i v 1 2

~-k (2)

Air i  R i  ViA
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+ [ 0 (5.20)

0 -2JCont.
2

The gain matrix K 1+1 is obtained from the relation Ki+ 1

= "21 (I(Ql + R+,) where C and f0 are the appropriate partitions of

the covariance Ai and Ri.1 is the measurement noise covariance at time "i+-."

Let the observer error covariance be the following

and partition the matrix i in (5.9) in the form

ii12I 1J' 1 3

-. ,= *i I  L ( 15.22)

12 1 "22 '23

J)13 i 9'23 J)33

(1) and k(2),
Finally, the optimal gain elements, k()a ki+1 can be written in

closed form as follows

k (12 (5.23)":" ki+ - i 2"

.0+o
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.. 1(2) u13 '

k (2) (5.24)
MW 2

1 v

where

' T 2Ci +T 3L i T4 22-

2 12)

2 a I - Tik'') 2k 2 (~)+T:)

;v 1 2t
" T2V2 2/

1= T c-12 + "2 + 22

12~ Ii 2

2 k'- 2 ~~ + Tk (2 ))

2 -Tk.(1)  2
2 i

T T 2 2
"13 -12 + 2

G 2 ( Tk (1 T k1 (2) ( 2

Initialization of the observer requires the evaluation of the covarianceA

matrix 0 = A M A. + where for this example, since M we

obtain the result:

67



4 2 2 302 T 22
2 Tov m v + m

v +  2 T 8 2 4

21o,2 2 2 22o 49ri 25T2r 2  l2:2 IIT: 2

22 2 2 2 2
1c v 2  r3  m 4 9n V 25T 2 2 I- r

0 T T 6-
l+ mv + m .2 m

T 8 (5.27)
I 24)

v. Finally, the optimal initializing gain elements, k I)and k 2,are found to

'" be:

2 3 2
v2y m

*: k I) T 8k. (1)( 75.27)
19 2T4

i"v + 4 m

k. k(2) = "  2

I' 2 2 2T 4

2 0m 2,..19-=1 + + a
v 2 v

5.3 PERFORMANCE EVALUATION, EXAMPLE I

We shall present next the results of a comparative study of several

tracking system designs for tracking targets as modeled in example 1. Among

those tracking filters evaluated are included the Kalman filter, the optimal

minimal-order observer, the optimal steady-state minimal order observer,

and the constant elgenvalue observer designs of Dellon [10] and Williams [32..

A comparison of the tracking accuracy for these several tracking systems
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is presented graphically in figures 5.1 through 5.7. Before discussing these

computer results, the following descriptive comments are necessary:

1. The optimal steady-state minimal-order observer is identical in

structure to the optimal (time-varying) minimal-order observer design

developed in this' dissertation, with the exception that the observer gain

matrix is constant and equal to the steady-state gain matrix, Lr K i*
i-CO

obtained from the minimal-order observer algorithms.

2. Dellon's constant eigenvalue observer design is also identical in

structure to the optimal minimal-order observer.* However, in this design

the observer gain matrix is chosen to yield a fixed time-invariant observer

with two constant and equal eigenvalues, Hence, to design a Dellon-type

observer for this example it is necessary to determine the observer gain

matrix, K, such that the observer F matrix, where F = A22 + KA
2 12, has the

2characteristic equation P() = (A- k2 and A is the desired observer eigen-

00valor. This observer is therefore completely specified by its eigenvalue, A.

The solution is easily shown to be the following.

I T ~k~') LrT 2/2

F j + (5.28)
o k(2)

A2 2  K 1 2

with

ODeilon's work is discussed in Section 2.1, Chapter 2.
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Ak A2 + 2A 3
S2T

and

T22A - A 2 - I

T

3. Williams, constant eigenvalue observer design is identical in

structure to a Kalman filter except instead of implementing Kalman's

gain matrix the observer gain matrix is chosen to yield an observer with

three constant and equal eigenvalues.* To design a Williams-type observer

for this example it is necessary to determine the triple of matrices (T, F, D)

satisfying the fundamental observer equation TA = FT + DHA such that the

observer F matrix has the characteristic equation P(,) = (A-Ad) 3 and 4 is

the desired observer eigenvalue. Hence, the Williams' observer is also

completely specified by its elgenvaluc, A . For the system (A, H) of0

example 1 the solution is found to be the following.

3A 1 01

.)F o

0 0
0

*. (5.29)

["2T°.

•Waliams' work Is discussed in Section 2.2, Chapter 2.
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T T 2

T T
T2

T = -2 -T - (5.29)
Cunt.

0 0

Having described each of the observer designs considered in this

comparative study we are now ready to discuss the computer results

presented graphically in Figures 5.1 through 5.7. In this study, the following

typical radar and target model parameters were used:

1. Radar range measurement accuracy, cv = 10 (ft.)

2 2
2. Target maneuver variance, am = 100 (ft./sec.) 2

3. Data Rate, T = I second

Presented in Figures 5.1 and 5.2 is the total mean-square estimation

error versus the discrete time index "i" (that is, the trace lcxi-xi)

(C-x) '] versus time "i"). Figure 5.1 demonstrates the results

Dellonts design for observing eigenvalues of A= .3, .4, .45 and .5 and also

demonstrates the results of the Kalman filter, the optimal observer* and

the optimal steady-state observer. With reference to Figure 5.1, it is clear

that the overall steady-state estimation error of the optimal observer is

increased from that of the Kalman filter by approximately 5.9% whereas for

the best possible equal elgenvalue design (Q. = .45) the corresponding

*For the sake of brevity we shall refer to the "optimal minimal-order
observer" as the "optimal observer."
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dugr.datiun is on the order of ib.5,i. Therefore it ib concluded that the

steady-state performance of the optimal observer is superior, by far, to the

oe-st equal eigenvalue observer design. Inspection of the transient behavior

also shows this same general trend to be true, as seen in Figure 5.1.

(Nutv also, in this example, that the optimal steady-state observer provides

excellent tracking performance, not only in the steady-state but during the

transient period as well).

Another interesting comment can bc made concerning the results of

Figure 5.1. In viewing the results of Figure 5.1 it is seen that the best

steady state performance is achieved with A = .45, however during the
0

transient period the design with Ao = .4 performs best indicating that to obtain

acceptable tracking performance (during both the transient period and in the

steady-state) based on selection of observer eigenvalues it is perhaps

necessary to select the eigenvalue in an adaptive manner. This idea was first

proposed by Bona [ 7 j where it was suggested that the response time could be

decreased by using one eigenvalue during the transient period and after a

given time the eigenvalue could be increased to improve steady-state estima-

tion accuracy.

Similar comments can be made about the performance of the

Williams' 3-state observer design as seen from Figure 5.2. To achieve the

best steady-state tracking performance in this case, one takes the observer

*i eigenvalue to be A = .35. However, it is seen in Figure 5.2 that A0 = .3
0

provides much better tracking accuracy during the transient period. In

regards to steady-state tracking performance it is seln that for the best

eigenvalue (Ab= .35) the overall mean-square error is increased by

approximately .10.7% from that of the K alman filter.
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Figures 5.3 through 5.7 provide a breakdown of the overall mean-

square estimation error into target position, velocity and acceleratiun errors.

Figure 5.3 shows the mean-square error in the position estimate versu.

discrete time "i" fur each of the observer designs being evaluated. Siutm

WiUiams' observer is a 3-state filter, it provides some improvement in the.

estimate of target position whereas the minimal-order observer de-igns

*: (including the optimal observer, the optimal steady-state observer and

Dellon's equal eigenvalue observer) do not improve the accuracy in target

. position. This is no great loss however, since even the Kalman filter only

improves the accuracy in target position from its initial value of 10 feet

r.m.s. to approximately 9 feet r.m.s. in the steady state. From the stand-

point of good tracking system design this slight improvement in position

accuracy is hardly worth the effort. Reduction in the size of the tracking

filter from 3 states to 2 states will result in significantly reduced computer

processing requirements while yielding only a slight loss in position

accuracy.

Figures 5.4 and 5.5 present the corresponding mean-square error in

the estimate of target velocity. From these curves one obtains the relative

degredation in the velocity estimate (ft./sec.) from that of the Kalman filter

to be, in the steady-state, 3.3% for the optimal observer, 6.2% for the

Williams observer with A = .35 and 11.2% for the Dellon observer with
0

Ao = .45. Similar comments can be made concerning the mean-square
--errors in the estimate of target acceleration shown in Figures 5.6 and 5.7.
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5.4 EXAMPLE 2

We shall next consider the important problem of radar tracking of

manned maneuvering targets as recently studied by Singer [273. In this

example the target acceleration is modeled appropriately as a time-wise

correlated noise sequence of the Gauss-Markov type. The fundamental state

equations describing the system in one dimension are again given by (5.1),

(5.2). All the basic definitions and assumptions of example I are therefore

assumed to hold with the exception that in example 2 the state driving noise,

w i , is taken to be a scalar Gauss-Markov sequence. Hence, wi is obtained

as the output of the discrete-time linear system

- i+= Pwi + i (5.30)

where 'i is a zero-mean scalar white sequence with variance o)and

P is the correlation between successive maneuver samples. Since w in (5.30)

is a non-white sequence, the Kalman filter equations cannot be directly

*" applied and it is necessary to "whiten" the input noise before the Kalman

equations can be used. The usual solution to the "whitening" approach is to

augment the state equations (5.1), (5.2) using the relation (5.30).

When this is done we obtain the following "augmented" state equations.

. I, T 2  0

1MT T 0 xi  0

i-. 0 1 T 0 i. 0
+ (5.31)

m0 0 1 1 X 0

W 0 0 0 P wi  1

x(a). A (a) x (a) +w(a)
A---i -

* a
o8



7. X

x.Yi [ 1 o o 01 . i(~2
o 010](5.32)

wU

(a) Haxa) +v.Y i
It is clear that Kalman's filter for the above augmented

- system is a 4-dimensional filter and to obtain the solution for Kalman's

optimal weighting matrix it is necessary to solve recursively the augmented

Kalman algorithms

• A =Aa) la ) + K a) (Yia) H(a) A a) .(a)i+l/i+i i -i/i + 1 -- i+1 i+l L -i/i

K (a) = p H ( a), (H (a) p(la) Ha) + i (5.33)i+1 i+l/i i+ i+1 i+/i i+1 i+l)

p(a) - A a P a A)a) + Q a)

(5.34)
- (a) - K (a) H(a)) p(a)
i+l/i+. =ln+I i+1 i+ i+l/i

The superscript "(a)" implies the augmented system as defined in (5.31),

(5.32). In the defining equations for the augmented Kalman filter the co-

variance matrix for the augmented error vector is

r(a) E -(la) .(a) -(a) ( (a) , 5.35)
.Li+l/i+l -i+l)Li+l/+l -i+l (5.358

' 8 2



IJ-,iug the approach 1A Singer and M'nzingo 128 F we initialize the

augmented Kalman filter equations by tak.ing as the initial statv estimatL

for the augmented state the folluwing:

S0/0= Yo

~~=4 (*y. 2y_1+.1 2'
:": oU/0 T (2 o-2Y +2 Y-2 I

(5.36)
I

Xo/o T- (yo -I + Y-2)

w =0
0/0

where again Y-2' y_, and yo are the first, second and third radar measure-

ments received. The corresponding covariance initialization matrix for the

augmented filter is

2 3 'v 2 v 0

v 2 T 2 0
T

2 2 162.j.:-2 2
3 v 13 v + T 21 v 8 m 2T 2
2 TI 2 T 2  16 'm 1 2 14 m

4m

So/o 2 I
(a) 601 mU/ ST" +  m T4 +-o m  IPCM

v T TI
T2 2;,.T 2 +"2"m

+LT 2 1" + -T0
4 m

i- - -- - -- --------- - ------ -- ---
2 2 2C

I P T% I n
m -4 4 2

L 4 +2 2 1 m

(5.37)
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l'hc two cquali i. in (5.34) 1ulINIiiuk the RIi i ttti L*1a1dtiu1. IMlt i111-0

1x solved -"t 'ach discrt tUiII1 IIlnl'a obaI I. t 111C t ,1OIKIah I w 'igllimig i a I IIi,

K( a ) .For this simple example the Kalman filter computations are increased

significantly due to the addition of the extra state variable introduced by way

of the augmenting procedure. For example, Williams [32] has shown that the

number of multiplications or additions required to solve the Kalman equations

is given by the result

N=3n3 +2mn 2 +2m 2 n+2m3 +n 2 +2mn (5.38)

where x. is an n-vector and y. is an m-vector. Whereas the non-augmented
-i.

system (5.1), (5.2) originally required a total of N = 122 multiplications or

additions (since n=3, m=l), the augmented system defined in (5.31), (5.32)

requires N=258 multiplications or additions (since n=4, re=l). Clearly the

Kaiman filter computational requirements have been significantly increased

due to the mere addition of a single state variable.

Design of the minimal-order observer for this example uses

directly the "non-augmented" state equations (5.1), (5.2) together with the

relation (5.30). The design procedure is described in detail in Chapter 4.

Since the state equations (5.1), (5.2) are already in the desired observer

canonical form, the basic observer structure for this example is identical

with that obtained in the previous example 1. [See equations (5.10) through

(5.14). ] However, computation of the observer gain matrix, K i+l'

Is modified appropriately to account for the non-zero cross-correlation

term_-77'. That is, the optimal gain, K,+,, is obtained recursively

using the covariance matrix.

,,
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=,AP,, 5i Pi,. + 1V R .,V • ..... ...- .. ".-_ -.'.'A: .. .. "

(,.= P -C' 'A'+A R + il-- -I-i 'P A

where the cross -covariance i7 is computed recursively as

=Ti+I(A Pi ! - Q.) 1..' We shall omit the unnecessary details since the

solution of the gain matrix K1 ., is quite similar to that obtained previously

in example 1. Using the notation of the previous example we obtain the

K. optimal gain elements, k(2) and k(2) in closed form as follows.

i+l an k1+ ,in clsdfr2sflos
i

k - (5.40)

where

U1 =T 2 C i +T3 i +i
11 II+ 12 4j £22

+ a 2 (1 _ -k T- kP())

T i+ 3T2  i _
12 11 + 12 2 22

(5.41)

,v2 (.I._ -k (1 T 2 (kP)T

TE +T2 1. k () 1r T02) ()

T CW1 3 T 7 W23'
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In obtaining the above results we have used the notation

E L W CW

where ew' [::w ew ] (5.42)

where for this example only the elements Lw 13 and Lw23 are non-zero and

propagate according to the reLations

L1 3  ~ 1+1 ( 13 2 23 13 w23._i+.1.=: p 1' +T :- _ -2 23 + ' '  + 23J' .

(5.43)
21 +w +w 2] 3 _ew2 3 1 = [k i-( 2 ) (Tcw I, + 2 'm

Initialization of the observer proceeds as follows. The initial observer

error covariance matrix is of the form E _ = T C T 1 and it is easy to

show that for this example

-=A"MA + '+Q 0  (5.44)0 0 o + Ao - )  + 0

where Mo = E ix - )o - X)"- and is defined in (5.8). Evaluatng Mo

yields the result

2 2
23 1 v v

v T2  2 v 21
"M o = l 3 - T-' + 8 (5 45)

~Tm

ii

2 2
c2 6 2 T 2 2 &1 v To2

3 v 13m v v 2 2

T P~ 9
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Also, the cross-covariance to - io)' is found to be

0 0 0

2 2
_______ R TC 00 (5.46)

10 
0+o 2a mp j

Substituting (5.45) and (5.46) into (5.44) yields the initialization matrix -o
0

: Omitting the unnecessary details, the optimal initializing gain elements k

and k42) are found to be

212 7o T
v m(1) T + 8 (1+P)

29 2 T 2
1 + 2T4

(5.47)

2 2i100vCYV mr (3 +5P +2P2)

(2) T 2  4

Ic 1o2 M 2V 2T4

j ,

Finally, the elements Lw 3i and ew 2 3 given in (5.43) are initialized as

follows:
.2c 2k: ) c  T (2

I yw1 3 , m (P2+ p3 )k3+a 2 3T ( 2 + P3

22+ (5.48)
T2 22

-L 2= 3 (2) ~ +a 2 2 -

"23=  m 
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5.5 PERFORMANCE EVALUATION, EXAMPLE 2

In this example we have assumed the radar range measurements are

independent from sample to sample and the accuracy of the range data is

a= 10 ft. r *m *s. For the target model we have taken the target maneuver

Ivariance to be am 2 100 (ft./sec. 2) 2and the maneuver time constant

(correlation) has been varied in parametric fashion. More specifically,

maneuver correlations of 0, .2, .4, .6 and .8 were evaluated in the study and

the tracking data rate, T, was assumed to be 1 second. In each case

considered, the tracking performance of the 4-state Kalman filter and the

K 2-state minimal-order observer was evaluated. We shall next present the

computer results shown graphically in Figures 5.8 through 5.J1.

The total mean-square estimation error versus discrete time "i" for

both the Kalman filter and observer is shown in Figure 5.8. Note in this

figure that we have plotted trace E [(xi - Ii)(x, - versus "i" and there-

fore the K alman filter curves do not contain the error contribution in

estimating the augmented state variable, wi. Referring to Figure 5.8 it is

seen that the total steady-state mean-square estimation error for the observer

is increased from that of the Kalman filter by 5.97o. 5.17%, 5.0%, 6.6% and

16.5% for target maneuver correlations of 0, .2, .4, .6 and .8 respectively.

These results indicate that the overall tracking performance is dependent

upon P, the maneuver correlation, as is expected. From the viewpoint of

tracking system design, however, it is more meaningful to consider the

individual accuracies in target position and velocity estimates since these

two quantities are the critical design quantities. For this reason we have

shown in Figures 5. 9 and 5. 10. respectively, the mean square errors in

target position and velocity. From Figure 5.9 it is seen that Kalmian filtering



improves the initial measurement accuracy of 10 ft. r.m.s. to, at best,

about 9 ft. r.m.s. in the steady state. As stated previously in example 1,

this slight improvement in position accuracy is hardly worth the increase in

numerical and computational complexities associated with mechanizing the

4-state K alman filter. The corresponding mean-square errors in target

velocity are shown in Figure 5.10. From these curves it is determined that

the steady-state accuracy loss in the velocity estimate (ft./sec.) incurred

*a in using the 2-state observer instead of the 4-state Kalman filter is

approximately 3.3%, 3.1%, 3.2%, 3.6% and 6.9% for maneuver correlations

of 0, .2, .4, .6 and .8, respectively. For completeness, we have also

included, in Figure 5.11, the corresponding mean-square error in the

- estimate of target acceleration.

Table I shows the parametric K'. havior of the optimal observer gain

elements, k(l) and k 2 ), versus discrete time "i" for each of the maneuver

correlations considered. The purpose of including Table I in this example

is to point out the time-varying nature of the optimal observer solution which,

of course, is also a fundamental property of the Kalman filter. After an

initial transient period, the error covariance matrices settle down and remain

constant and likewise the corresponding optimal observer gain elements

remain constant. This same phenomenon occurs in Kalman filtering theory

for problems where the system matrices (A, H) are time-invariant and the

noise inputs are stationary stochastic sequences. In examining Table I it

is interesting to note that, generally speaking, the magnitude of the observer

% gain increases as the correlation increases from .= 0 to .= .8. Also,

from Table I it is seen that the observer settling time tends to increase as

the maneuver time constant increases. The settling time of the observer
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is comparable, however, with that of the Kalman filter, as can be seen

in Figures 5.8 through 5.11.
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, 6. SUMMARY AND SUGGESTIONS FOR FU&THE& WORk

b. 1 SUMMARY AND CONCLUSIONS

This dissertation has cunsidvred the problem of estimating the state

of a linear timc-varying discrete system using an observer of minimum

dynamic order. In Chapter 3 of the dissertation we consider systems for

which the plant noise w and measurement noise v. are modeled as

Gaussian white sequences. The effects of these noise disturbances upon the

estimation error are considered as an integral part of the fundamental

development. The solution of the observer design uses a special linear

transformation which transforms the given state equations into an equivalent

state spa .c which is extremely convenient from the standpoint of obserx ur

design. Design of the observer is then based on a special observer config-

i uration containing a free gain matrix, Ki, which is chosen to minimize the

mean-square estimation error at time "i." The solution obtained is optimal

at each instant 'T' and therefore is optimal both during the transient periud

and in the steady state. Computation of this gain matrix is done

recursively as in the Kalman filter algorithms, however, computationally thc

solution is much simpler than for the Kalman filter. In the special case of

no measurement noise, the observer estimation errors are identical with

that of the corresponding K alman filter. The main contribution of Chapter 3

is, therefore, the development of a completely unified theory for the design

of optimal minimal-order observers applicable to both time-varying and time-

invariant discrete systems for which the plant noise wi and measurement

noise v. are modeled as Gaussian white sequences.
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In Chapter 4 we have extended the basic optimal minimal-order

observer theory to cover that class of systems for which the noise

-' disturbances w,vi are time-wise correlated and are modeled adequately as

- Gauss-Markov processes. The usual approach to this estimation problem

is to augment the state vector and design the estimator (be it a Kalman filter,

.* observer, etc.) to provide estimates of the total augmented state. In

Chapter 4 we have utilized the basic observer structure developed in Chapter 3

and have modified the observer gain matrix appropriately to obtain minimum

mean-square estimates of the plant states without an increase in the

dimension of the observer (i.e., the observer dimension remains "n-in").

Along similar lines, we have also considered the special case whereby the

plant noises wi andv i are white sequences which are crosscorrelated at

time "i" (that is, E i = Si 6 i ) and have modified the observer gain

matrix appropriately to provide optimal performance in the mean-square

sense.

To illustrate the typical application of the observer designs developed

in this dissertation we have considered, in Chapter 5, the design of a radar

tracking system. In the first example we treat the situation where the noises

,t, and vi are white sequences. In this example, the performance of the

optimal minimal-order observer is compared with that of other estimators

including the K alman filter and also several equal-eigenvalue observer

designs. It is shown that for a typical set of radar and target model para-

meters the optimal observer provides extemely good tracking performance and

is superior by far to the equal efgenvalue designs of Dellon [I0 and

( Williams [321. 1 example" ive treat the situation where the target

acceleration is mo-. ad as a time-wise correlated noise sequence. Here the

97

. , - .. ,' ,,.. : , .'4... . . .. ." : -. "--.:- . . , . . .... ., . . .. . ,,. . .. . . .,- . . ... :. - '. ', ')_



2-dimensional optimal observer is compared with the corresponding 4-state

K alman filter and it is shown that the observer provides acceptable tracking

performance over a wide spectrum of target maneuver time constants. The

S. examples of Chapter 5 clearly illustrate the practicality of the observer

design techniques developed in the dissertation.

6.2 TOPICS FOR FUTURE INVESTIGATION

During the course of performing this research several closely

associated unsolved problems of an extremely fundamental nature have been

uncovered and these problems might form the basis for further research. In

this dissertation we have considered only observers of minimal dynamic

order. That is, the dimension of the dynamical portion of the estimator is

'en-rn" where "n" is the dimension of the state vector to be estimated and "in"

is the number of independent available outputs. Since it has been demonstrated

quite vividly that the K~alman filter is an observer of dimension "n" and since

the Kalman filter provides the best performance in terms of minimizing the

mean-square estimation error, the idea of considering non-minimal order

observers is appealing. (A non-minimal order observer has dynamic order

greater than the minimal order observer but less than the K~alman filter.)ci It is conjecturted that through the use of non-minimal order observers
the estimation error can be reduced even further from that attained with

the optimal minimal-order observer developed in this dissertation. However,

the improvement in estimation accuracy is undoubtedly accomplished only at

the cost of increased complexity. This non-minimal order observer would

* have important application in the class of systems where some of the outputs

are relatively noise-free while the remaining outputs are rather noisy and
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mubt be filtered. In this proposed domain of research the literature is

L ,ml)letely lacking and therefore it is recommended that further work be done

.along these line.,.

Another area of resuarch which appears to be relatively void of

investigation: is in the area of super low-order observers. When an estimate

of some fixed linear combination of states is required, it is well known 21

that such an estimate can be obtained using an observer of order less than

the minimal order, "n-rn." A consideration of the effects of system noise

inputs upon the performance of these so called super low-order observers

may lead to an optimal design similar to the optimal minimal-order observer

developed in 'this dissertation.

Another possible topic for future research of a more practical nature

is the design of observers via the selection of observer eigenvalues. To

date, most of the literature pertaining to the design and optimization of

observer systems has been concerned with the ability to specify, with

complete freedom, the choice of observer eigenvalues. In fact, numerous

researchers have been able to demonstrate through the clever use of special

canonical forms that it is possible to design observers with completely

arbitrary elgenvalues provided the plant equations satisfy the observability

criterion. However, it is clear that without a thorough analysis of the

effects of noise the question of where to optimally place the observer eigen-

values for reasonable performance is still unanswered and remains a per-

plexing problem to the systems designer. It is one thing to be able to design

observer systems with complete freedom in the choice of observer eigen-

values, but it is another to be able to specify what the eigenvalues should be.

Very little has been written about this latter aspect.
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Jn the de ign ol an obe'vVr fiur any ,.iven Jixud plati, one

approach to this eigenvalu svlectiui! lrubhlm might . ii ' irsV'stt i .!I

thu eigenvalucs of the corruspondini- ialiuan jilier in urut.: tO ua~~T i~

guidelines for selecting the observe,. Qigcnvalues. lh re.stricil, U la--

admissible observers to be investigated, some fundamental rul.-, night ,C

developed for the optimal chuict of e,lrver .igenvaluLe-. i(e.. •

fundamental nature are also lacking in the domain of adaptive ouberver uut1,2I ,

wherein the choice of observer eigci.\alucs j, modified with timL, in ai.

optimal fashion according to the noise statistics, signal to noise ratio, or

-.oe other criterion. Much rescarch remain- to hc done in the dumaii; ,J

observer eigenvalue selection whcre the minimization of noise cffvcts upu.l

system performance is of prime importance.

Finally, it should be mentioned that thc dcv-ig; of the optimal mi~:imal-

order observer for time-varying continuous.,-time systems is still an unsubi vd

problem. This problem was investigated by Ash "4, 5 ! who conoiuvrc.l tLU

dsign ofa minimal-order observer for continuous time-varying linear

systems (i.e., the continuous-time analog oi tile discretc-time prouien,

treated in this dissertation) with the goal of obtaining an obs\rver osign
* which minimized the effects of noise upon the estimation accuracy U; the

.

observer derived estimates. Ash proposed a suboptimal trial-and-error-type

solution to the problem and hence the results of his work are an "engineering"

rather than a "mathematical" solution to the design problem. He was unable to

select the free gain matrix K(Q (analogous to the free gain matrix Ki of the

discrete observer) to absolutely mnimize the overall-mean-square

estimation error. It Is conjectured that an optimal-observer gain matrix,

K*(t), does exist for the continuous time-varying minimal-order observer
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and the solution of this problem would be an important contribution to the

theory.

One possible approach to the solution ol this problem might We to

discretizu the continuous time-varying statle equations obtaining a model for

the plant which is valid at discrete intervals At seconds apart. Then the

theory developed in this dissertation for discrete-time systems may be

applied to the discrete representation of the plant and the optimal discrete

minimal-order observer derived. Taking the sample interval At sufficiently

small one would obtain a reasonably good approximation to the continuous

time problem. Of course, it is of interest to obtain a closed form solution

for the optimal observer gain K *(t) analogous to the gain K" of the discrete

time observer. In r 15' Kalman was able to obtain the continuous-time

Kalman filter solution from a consideration of the discretized model by

taking the limit as t - 0. But even Kalman himself questioned the rigor of

this approach and in L18J Kalman took a more rigorous approach and solved

the Wiener-Hopf equation directly to obtain the continuous time version of

the Kalman filter. It is recommended that further work be done in the area of

minimal-order observer design for continuous-time equations with the goal of

determining the optimal time-varying solution.
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